Item #003858 Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant. Jacques de BILLY.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.
Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.

Diophanti redivivi pars prior [- posterior], in qua, non casu, ut putatum est, sed certissimâ methodo, & analysi subtiliore, innumera enodantur problemata, quae triangulum rectangulum spectant.

Lyon: J. Thiolly, 1670.

1st Edition. Hardcover. Very Good. Item #003858

Two parts in one volume. 8vo (166 x 102 mm). [8], [1-2] 3-302, [2]; [1-2] 3-140, [4] pp., including separate title to each part, part I with blank leaves ā4 and T8, part II with final two blanks I7-8; unnumbered preliminary leaves of gathering ā4 misbound between pp. 16 and 17 of part I. Titles and some final pages of chapters with woodcut printer's device, woodcut initials, head- and tailpieces. Signatures: A8(A1+ā4(-ā4)) B-T8; 2A-I8. Contemporary French vellum, spine lettered in ink, original endpapers, sprinkled edges (spine and joints with worm holes, vellum soiled, 3 gatherings working loose). Text with even light browning, worm track to lower corner of some leaves of part I not affecting text, occasional minor brown spotting. Provenance: Old collectors stamp with the initials F.T. to front pastedown. Very good copy in untouched binding, collated and complete with all blanks present as called for. ----

VERY RARE FIRST EDITION of this mathematical treatise. Jacques de Billy, Jesuit, mathematician and astronomer, was born in Compiègne in 1602 and died in Dijon in 1679. He taught mathematics at several Jesuit colleges (Reims, Dijon, Grenoble) and was rector of the colleges at Langres, Sens and Châlons-en-Champagne. His pupils included Ozanam and Claude-Gaspard Bachet de Méziriac. "This work contains many of the discoveries on the theory of numbers made by Fermat ... by 1659 Fermat was engaged in correspondence with J. de Billy. This correspondence is reflected in Billy's writings. Fermat's innovations were to prove formative for modern number theory ... Billy's work ... represents an intriguing testament to the early development of this branch of mathematics" (DSB).
Contents: Pars prior: in qua, non casu, ut putatum est, sed certissima methodo, & analysi subtilore, innumera enodantur problemata, quae triangulum rectangulum spectant - Pars posterior: in qua, non casu, ut putatum est, sed certissima methodo, & analysi subtilore, innumera enodantur problemata, quae aliud quam triangulum rectangulum spectant.
References & Bibliography: J. Itard, "Billy, Jacques de". In: Dictionary of Scientific Biography. Vol. II., p. 131 (DSB); Brunet I, 946: "Recherché et rare"; DeBacker/Sommervogel I, 1479). - Visit our website to see more images!

Sold

See all items in Mathematics
See all items by
*: price includes V.A.T. for private EU customers (Preis inkl. Mwst. für private Endkunden aus Deutschland und der EU)

Delivery time up to 10 days. For calculation of the latest delivery date, follow the link: Delivery times
Lieferzeit max. 10 Tage. Zur Berechnung des spätesten Liefertermins siehe hier: Lieferzeiten